Archivo del sitio

Bohr (II). ¿Cómo convencer a la comunidad científica?

¡Esto es un sinsentido! Las ecuaciones de Maxwell son válidas bajo cualquier circunstancia.

Max Von Laue

¿Os acordáis de que dije que el modelo de Niels Bohr fue aceptado rápidamente por la influencia de Rutherford? Pues ese “rápidamente” no fue una cuestión de días y nos servirá para descubrir cómo funciona la ciencia.

La recepción inicial del modelo de Bohr encontró rechazo en algunos de los físicos más importantes del momento y tuvieron que presentarse varias evidencias que confirmaban la cuantización del modelo atómico para convencer a la comunidad científica.

Las líneas de Pickering-Fowler

Ejemplo de líneas del espectro del hidrógeno (arriba) y helio (abajo).

Ejemplo de líneas del espectro del hidrógeno (arriba) y helio (abajo). Aparecen remarcadas sobre el espectro visible continuo. (1)

E.C. Pickering descubrió una serie de líneas extrañas en la serie espectral emitida por la estrella Zeta Puppis en 1896. Su teoría era que se debían al hidrógeno, expuesto a unas condiciones de presión y temperatura desconocidas. Para ajustar estas nuevas líneas a la ya conocida por esa época fórmula de Balmer, tuvo que hacer algo muy poco elegante: en lugar de usar números enteros para el valor de m, añadió un término extra:

Balmer-Pickering

Eso está muy feo, Pickering.

Lee el resto de esta entrada

Anuncios

El experimento de Thomson

A finales del siglo XIX, el átomo era considerado indivisible. Joseph J. Thomson consiguió dar fin a esta idea mediante un importante experimento que llevó al descubrimiento de una nueva partícula: el electrón.

Tubo de vacío usado por JJ Thomson en uno de los experimentos realizados para descubrir el electrón. Expuesto en el museo del laboratorio Cavendish

Lee el resto de esta entrada

¿Y la materia?

Si los fotones se pueden comportar como ondas y como partículas, ¿por qué no podrían hacer lo mismo otras partículas?

Esta es la pregunta que se hizo Louis De Broeglie en 1924 y que culminó en su tesis llamada Recherches sur la théorie des quanta (Investigaciones sobre la teoría cuántica), la cual especulaba con la naturaleza del electrón y la posibilidad de que pudiera comportarse como onda y como partícula.

Para describir el comportamiento del electrón como onda, De Broeglie empleó la misma ecuación definida para el fotón por Einstein:

Longitud de onda de un electrón según De Broglie

Longitud de onda de un electrón

Su trabajo era altamente especulativo, ya que la longitud de onda de un electrón según su fórmula era sumamente pequeña y no había posibilidad de tener una rendija lo suficientemente pequeña para provocar difracción en una “onda” electrón.

Pero la ciencia está llena de casualidades y en 1927, C.J. Davison y L.H. Germer cristalizaron por accidente el blanco de níquel sobre el que estaban trabajando para estudiar la dispersión de los electrones y obtuvieron un resultado asombroso, que implicaba que los electrones estaban sufriendo difracción: habían encontrado las rendijas que se necesitaban para demostrar la hipótesis de De Broeglie. En el mismo año, G.P. Thompson obtuvo el mismo resultado mediante otro método basado en la transmisión de electrones a través de hojas delgadas de metal. Las longitudes de onda obtenidas para las señales difractadas cumplían con exactitud las previsiones de De Broeglie y dependían de la constante de Planck y del momento (p = mv) de los electrones.

Con este descubrimiento se abría la puerta al microscopio electrónico. Si los electrones se comportaban como ondas, era posible utilizarlos para “ver”, y al tener longitudes de onda mucho más pequeñas que el fotón se podrían ver objetos mucho más pequeños.

De Broeglie ganó el premio Nobel en 1929 y Davison y Thompson lo consiguieron unos años más tarde, en 1937.

Posteriormente, se demostró que las fórmulas de De Broeglie no solo son aplicables a los electrones, sino que su aplicación se extiende a toda la materia. Es decir, nosotros también somos una onda. Vamos a comprobar cual sería la longitud de onda de una persona de 73 kg corriendo a una velocidad de 12 km/h:

La longitud de onda obtenida es 21 órdenes de magnitud menor que, por ejemplo, el radio medio de un átomo de hidrógeno. Lamentablemente, no existen rendijas en la naturaleza que nos permitan ver como nos difractamos al salir a correr por la mañana.

Curiosidades de la ciencia: La dualidad onda partícula y la familia Thompson.

En 1906 J.J. Thompson ganó el premio Nobel por sus investigaciones en la conducción de la electricidad en gases, obteniendo la relación entre carga y masa del electrón. Su hijo G.P. Thompson ganó el nobel en 1937 por demostrar la naturaleza ondulatoria del electrón. Padre e hijo ganaron sus premios Nobel demostrando la existencia del electrón como partícula y como onda respectivamente y ambos tenían razón.

Bibliografía

– Física Cuántica. Eisberg, Resnick.

– Física para la ciencia y la tecnología. Tipler, Mosca. 6ª edición. Editorial Reverté

www.nobelprize.org

A %d blogueros les gusta esto: